1.7 Natural boundary condition

So far, the stationary problem for $J[u] = \int_a^b F(x,u,u')dx$ has been solved, assuming that the boundary condition for u is given at $x = a$ and b, i.e., $\delta u(a) = \delta u(b) = 0$. Now we consider the same stationary problem without specifying any boundary condition for u in advance.

The first variation of $J[u]$ is written as

$$\delta J[u] = \int_a^b [F_u(x,u,u') - \frac{d}{dx}F_{u'}(x,u,u')]\delta u(x)dx + F_{u'}(x,u,u')\delta u(x)|_a^b = 0 \quad (49)$$

From this equation, we have

$$F_u(x,u,u') - \frac{d}{dx}F_{u'}(x,u,u') = 0 \quad \text{for} \quad a < x < b, \quad (50)$$

$$\delta u = 0 \quad \text{or} \quad F_{u'}(x,u,u') = 0, \quad \text{at} \quad x = a, \quad (51)$$

$$\delta u = 0 \quad \text{or} \quad F_{u'}(x,u,u') = 0, \quad \text{at} \quad x = b. \quad (52)$$

The second equations in eqs.(51) and (52) are called the natural boundary condition, while the first equations for $u(x)$ at $x = a$ and b are called the rigid boundary condition.

If the natural boundary condition is given in the form of $F_{u'}(x,u,u')|_{x=a} = \alpha$ and $F_{u'}(x,u,u')|_{x=b} = \beta$, the functional $J[u]$ to be minimized is modified as follows.

$$J[u] = \int_a^b F(x,u,u')dx - \{\beta u(b) - \alpha u(a)\} \quad (53)$$

Problem 1.7.1 Obtain the natural boundary conditions for the functional $J[u] = \int_a^b F(x,u,u',u'')dx$.

Answer: $\partial F/\partial u' - d(\partial F/\partial u'')/dx = 0$, $\partial F/\partial u'' = 0$ at $x = a, b$

1.8 Variational theorem for linear elasticity

Consider the domain D enclosed by the boundary S, occupied by a linearly elastic solid. Let u, σ, ϵ be the displacement, stress, and strain, respectively. Also let $\vec{f}, \vec{t}, \vec{u}$ be the given body force, surface traction and displacement, respectively. For a linearly elastic solid in equilibrium state, we have the following basic equations:

Equilibrium equation: $\nabla \cdot \sigma + \vec{f} = 0$, for $x \in D \quad (54)$

Constitutive equation: $\sigma = E: \epsilon$, for $x \in D \quad (55)$

Strain-displacement relation: $\epsilon = L \cdot u$, for $x \in D \quad (56)$

Traction boundary condition: $\vec{t} \equiv n \cdot \sigma = \vec{t}$, for $x \in S_t \quad (57)$

Displacement boundary condition: $u = \bar{u}$, for $x \in S_u = S \backslash S_t \quad (58)$

where E is the elastic constant, L is the differential operator having the components $L_{ijk} = (\delta_{ik}\partial/\partial x_j + \delta_{jk}\partial/\partial x_i)/2$, and n is the normal vector on the boundary S.

The problem is to obtain u, σ, ϵ in D by solving eqs.(54)-(56) under the boundary conditions (57) and (58).

1.8.1 Hu-Washizu variational theorem

The Hu-Washizu theorem states that all basic equations for linear theory of elasticity, shown in eqs.(54)-(58), can be obtained by minimizing the functional with independent parameters u, σ and ϵ.

$$J[u, \sigma, \epsilon] = \int_D \left\{ \frac{1}{2} \epsilon^T : E : \epsilon + \sigma^T : (L \cdot u - \epsilon) - \vec{u}^T \cdot \vec{f} \right\} dV$$

$$- \int_{S_t} \vec{u}^T \cdot \vec{t} dS - \int_{S_u} (\sigma \cdot n)^T \cdot (\bar{u} - \bar{u}) dS \quad (59)$$
1.8.2 Hellinger-Reissner variational theorem

If we substitute \(\epsilon = E^{-1}\sigma \) into eq.(60), then we have the functional with the parameters \(u \) and \(\sigma \).

\[
J[u, \sigma] = \int_D \left\{ -\frac{1}{2} \sigma^T : E^{-1} : \sigma + \sigma^T : L \cdot u - u^T \cdot \bar{f} \right\} dV
- \int_{S_i} u^T \cdot \bar{t} dS - \int_{S_n} (\sigma \cdot n)^T \cdot (u - \bar{u}) dS
\]

The Hellinger-Reissner variational approach is to minimize the functional \(J[u, \sigma] \) with the known strain-stress relation of \(\epsilon = E^{-1}\sigma \).

1.8.3 Minimum potential energy theorem

If we further introduce \(\sigma = E : \epsilon = E : L \cdot u \) in \(D \) and \(u = \bar{u} \) on \(S_n \), then the functional \(J[u] \) is obtained as follows.

\[
J[u] = \int_D \left\{ \frac{1}{2} (L \cdot u)^T : E : (L \cdot u) - u^T \cdot \bar{f} \right\} dV - \int_{S_i} u^T \cdot \bar{t} dS
\]

Problem 1.8.1 Derive the basic equations in each theorem by minimizing the functional defined by eqs.(60), (61) or (62).

Hint: use the following equation in the derivation

\[
\int_D \sigma^T : L \cdot \delta u dV = \int_D \sigma^T : \nabla \delta u dV \quad \text{(due to stress symmetry)}
\]

(63)

\[
= \int_D \{ \nabla \cdot (\sigma \cdot \delta u) - (\nabla \cdot \sigma) \cdot \delta u \} dV
\]

(64)

\[
= \int_S n \cdot \sigma \cdot \delta u dS - \int_D (\nabla \cdot \sigma) \cdot \delta u dV
\]

(65)

Problem 1.8.2 Obtain the basic equations for the beam in \(0 < x < l \) by making stationary the total potential energy, given by

\[
U = \int_0^l \left\{ \frac{1}{2} EI \left(\frac{d^2 u}{dx^2} \right)^2 - q(x)u(x) \right\} dx - \left\{ -M_0 \left(\frac{du}{dx} \right)_0 + M_l \left(\frac{du}{dx} \right)_l + Q_0 u_0 - Q_l u_l \right\}
\]

(66)

where \(u, EI, q, M \) and \(Q \) are the deflection, the bending rigidity, the distributed load per length, the bending moment and the shear force, respectively, and the subscripts \(0 \) and \(l \) indicate the boundary values at \(x = 0 \) and \(l \), respectively.

1.9 Trial function method — Ritz’s method

We consider the problem governed by the following Poisson’s equation

\[
\nabla^2 u(x, y) = \bar{f}(x, y) \quad \text{in} \quad D
\]

(67)

where \(u \) is the function to be determined and \(\bar{f} \) is a given function. The boundary condition is given by \(u = 0 \) on the boundary \(S \).

To solve eq.(67) is equivalent to find the function \(u \) by minimizing the functional

\[
J[u] = \int \int_D (u_x^2 + u_y^2 + 2\bar{f}u) dx dy
\]

(68)

Now the variational problem is approximately solved by assuming that the function \(u \) is expressed by using the trial function as follows:

\[
u(x, y) \approx c_1 w_1(x, y) + c_2 w_2(x, y) + \ldots + c_n w_n(x, y)
\]

(69)

where \(c_1, \ldots, c_n \) are the coefficients and \(w_1, \ldots, w_n \) are linearly independent functions called trial bases. Note that each trial basis \(w_i \) should satisfy \(w_i = 0 \) on the boundary \(S \).
Substituting eq.(69) into eq.(68), the functional $J[u]$ can be expressed in the following form

$$J[u(c_i)] \approx \sum_{i=1}^{n} \sum_{k=1}^{n} c_i c_k J_2[w_i, w_k] + 2 \sum_{k=1}^{n} c_k J_1[w_k] + J_0$$ (70)

where

$$J_2[u, v] = \int \int_D (u_x v_x + u_y v_y) dxdy$$ (71)
$$J_1[u] = \int \int_D \bar{f} u dxdy, \quad J_0 = 0$$ (72)

The procedure for minimizing $J[u]$ leads to

$$\frac{\partial J}{\partial c_i} = 0 \quad (i = 1, \ldots, n)$$ (73)

which produces the system of equations to determine c_k:

$$\sum_{k=1}^{n} c_k J_2[w_i, w_k] + J_1[w_i] = 0 \quad (i = 1, \ldots, n)$$ (74)

The above-mentioned method is called the Ritz’s method. The keypoint of the Ritz’s method is how to select appropriate functions for trial basis w_1, \ldots, w_n.

Example 1.9.1 Consider the following boundary value problem:

$$x u'' + u' + \frac{x^2 - 1}{x} u + x^2 = 0, \quad 1 \leq x \leq 2$$ (75)

subjected to the boundary condition $u(1) = u(2) = 0$. The exact solution to the above equation is given by $u(x) = 3.6072 J_1(x) + 0.75195 Y_1(x) - x$, where J_1 and Y_1 are Bessel function and Neumann function of the first order, respectively. For example, we have $u(1.5) = 0.2024$.

The variational principle equivalent to the above boundary value problem is to find the solution to minimize the functional

$$J[u] = \frac{1}{2} \int_1^2 \left((u')^2 - \frac{x^2 - 1}{x} u^2 - 2x^2 u \right) dx$$ (76)

Now we approximate the function u by $u \approx c_1 w_1 = c_1 (x - 1)(2 - x)$. It then follows that

$$J[u(c_1)] = \frac{1}{2} \int_1^2 \left\{ (c_1 w_1')^2 - \frac{x^2 - 1}{x} (c_1 w_1)^2 - 2x^2 c_1 w_1 \right\} dx$$ (77)

$\frac{\partial J[u(c_1)]}{\partial c_1} = 0$ yields the following equation

$$c_1 \int_1^2 \left\{ (w_1')^2 - \frac{x^2 - 1}{x} (w_1)^2 \right\} dx - \int_1^2 x^2 w_1 dx = 0.$$ (78)

Hence we have

$$c_1 = \frac{\int_1^2 x^2 w_1 dx}{\int_1^2 \left\{ (w_1')^2 - \frac{x^2 - 1}{x} (w_1)^2 \right\} dx} = 0.8110.$$ (79)

So the approximated solution is $u \approx 0.81110 \times w_1(x)$, which gives $u(1.5) \approx 0.2027$.

Problem 1.9.1 Consider the Laplace field satisfying $\nabla^2 u + 1 = 0$ in the 2D domain $0 \leq x \leq 1$, $0 \leq y \leq 1$, where the boundary condition is given by $u = 0$ on $x = 0, 1$, and $y = 0, 1$. Assuming $u(x, y) = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sin(i \pi x) \sin(j \pi y) \tilde{u}_{ij}$, determine the coefficients \tilde{u}_{ij}.

Problem 1.9.2 Consider the beam with the unit length subjected to the distributed load per length of $q(x) = q_0(1-x)$ and the following boundary conditions

$$u(0) = 0 \quad \text{and} \quad u'(0) = 0 \quad \text{at} \quad x = 0$$ (80)
$$u(1) = 0 \quad \text{and} \quad M(1) = -EIu''(1) = 0$$ (81)
where \(u \), \(M \) and \(EI \) are the deflection, the bending moment and the bending rigidity of the beam, respectively. For such a beam, the total potential energy \(U \) is given by

\[
U = \int_0^1 \left(\frac{1}{2} \frac{M^2}{EI} - \bar{q}u \right) dx = \int_0^1 \left(\frac{EI}{2} (u'')^2 - \bar{q}u \right) dx. \tag{82}
\]

Assuming that the deflection \(u \) is approximated by \(u \approx c_1 w_1 + c_2 w_2 \), where

\[
w_1 = a_1 + a_2 x + a_3 x^2 + a_4 x^3 \quad \text{and} \quad w_2 = b_1 + b_2 x + b_3 x^2 + b_4 x^3 + b_5 x^4,
\]

determine the deflection \(u \).

Hint Using the rigidity boundary conditions of

\[
w_1(0) = w_2(0) = 0, \quad w_1'(0) = w_2'(0) = 0 \quad \text{and} \quad w_1(1) = w_2(1) = 0,
\]

show that \(w_1 \) and \(w_2 \) are obtained as

\[
w_1 = (x^2 - x^3) \quad \text{and} \quad w_2 = x^2 - 2x^3 + x^4.
\]

Then apply the variational principle by substituting

\[
u = c_1 w_1 + c_2 w_2
\]

into eq.(82).