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9.4 Vector and scalar functions and fields.  Derivatives 
 
We now begin with vector calculus which concerns two kinds of functions: 
 
Vector functions: Functions whose values are vectors depending on the points P  in space, 
 
 1 2 3( ) ( ) ( ) ( )P v P v P v P   v v i j k . 

 
Scalar functions: Functions whose values are scalars depending on the points P  in space, 

 
 ( )f f P . 
 
Here, P  is a point in the domain of definition, which in applications is a 3-D domain or a surface 
or a curve in space.  A vector function defines a vector field and a scalar function defines a scalar 
field in that domain or on that surface or curve.  Examples of vector fields are field of tangent vectors 
of a curve, field of normal vectors of a surface, velocity field of a rotating body and the gravitational 
field (see Figs. 193-196).  Examples of scalar fields are the temperature field in a body or the 
pressure field of the air in the earth's atmosphere. 

 
Vector and scalar fields may also depend on time t  or on some other parameters. 

 
 

If we introduce Cartesian coordinates , ,x y z , then instead of ( )Pv  we can write, 
 

 1 2 3( , , ) ( , , ) ( , , ) ( , , )x y z v x y z v x y z v x y z   v v i j k . 

 
Note that the components depend on the choice of the coordinate system, whereas a vector field that 
has a physical or a geometric meaning should have magnitude and direction depending only on P , 
not on the choice of coordinate system.  Similarly for the value of a scalar field ( ) ( , , )f P f x y z . 
 
Example 1: Scalar function (Euclidean distance in space) 

The distance ( )f P  of any point P  from a fixed point 0P  in space is a scalar function 

whose domain of definition is the whole space.  ( )f P  defines a scalar field in space.  

If a Cartesian coordinate system is introduced and 0P  has the coordinates 0 0 0, ,x y z  and 

P  has the coordinates , ,x y z  then f  is given by, 
 

2 2 2 1/ 2
0 0 0( ) ( , , ) [( ) ( ) ( ) ]f P f x y z x x y y z z       . 

 
If the given Cartesian coordinate system is replaced by another Cartesian coordinate 
system obtained by translating and rotating the given system, then the values of the 
coordinates of P  and 0P  will in general change, but ( )f P  will have the same value as 

before.  Hence ( )f P  is a scalar function.   
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Example 2: Vector field (Velocity field) 
At any instant the velocity vectors ( )Pv  of a rotating body B  constitutes a vector field, 
called the velocity field of the rotation.  If a Cartesian coordinate system having the 
origin on the axis of rotation is introduced then (see Ex. 5, Sec. 9.3), 
 

 ( , , ) ( )x y z x y z     v w r w i j k , (9.4.1) 
 

where , ,x y z  are the coordinates of any point P  of B  at the instant under 
consideration.  If the coordinate system is such that the z -axis is the axis of rotation 
and w  points in the positive z -direction, then w k  and  
 

 0 0 ( )y x

x y z

    
i j k

v i j . 

 
An example of a rotating body and the corresponding velocity field are shown in Fig. 
195. 
 

 
 
Example 3: Vector field (Field of force, gravitational field) 

A particle A  of mass M  is fixed to a point 0P  and a particle B  of mass m  is free to 

take up various positions P  in space.  Then particle A  attracts particle B .  According 
to Newton's law of gravitation the corresponding gravitational force p  is directed from 

P  to 0P , and its magnitude is proportional to 21/ r  , where r  is the distance between 

P  and 0P , 

 

 
2

c

r
p , (9.4.2) 

 
where c GMm  and 8 3 26.67 10 cm /(gm sec )G    is the gravitational constant.  
Hence p  defines a vector field in space.  If a Cartesian coordinate system is introduced 

such that 0P  has the coordinates 0 0 0, ,x y z  and P  has the coordinates , ,x y z  then, 

 
2 2 2 1/ 2

0 0 0[( ) ( ) ( ) ]r x x y y z z      . 

 
Assuming that 0r   and introducing the vector, 
 

 0 0 0( ) ( ) ( )x x y y z z     r i j k , 
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it is seen that rr  and ( 1/ )r r  is a unit vector in the direction of p ; the minus sign 

indicated that p  is directed from P  to 0P .  From this and eqn (9.4.2), 

 

 0 0 03 3

1
( ) [( ) ( ) ( ) ]

c c
x x y y z z

r r r
          p p r r i j k . (9.4.3) 

 
This vector function describes the gravitational force acting on B . 
 

 
 
9.4.1 Vector calculus 
 
Next it is shown that the basic concepts of calculus, i.e., convergence, continuity, and 
differentiability can be defined for vector functions in a simple and natural way.  Most important 
here is the derivative. 
 
Convergence: An infinite sequence of vectors ( ) , 1, 2,...,n n a  is said to converge if there is a vector 

a  such that  
 
 ( )lim 0n

n
 a a . (9.4.4) 

 
Here a  is called the limit vector of that sequence, and we write, 
 
 ( )lim nn

a a . (9.4.5) 

 
Cartesian coordinates being given, this sequence of vectors converge to a  if and only if the three 

sequences of components of the vectors converge to the corresponding components of a . 
 
Similarly, a vector function ( )tv  of a real variable t  is said to have the limit l  as t  approaches 

0t , if ( )tv  is defined in some neighborhood of 0t  (possibly except at 0t ) and 

 
 

0

lim ( ) 0
t t

t


 v l . (9.4.6) 

 
Then we write, 
 
 

0

lim ( )
t t

t


v l . (9.4.7) 
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Here a neighborhood of 0t  is an interval (segment) on the t -axis containing 0t  as an interior point 

(not as an endpoint). 
 
Continuity: A vector function ( )tv  is said to be continuous at 0t t  if it is defined in some 

neighborhood of 0t  (including at 0t  itself) and 

 
 

0
0lim ( ) ( )

t t
t t


v v . (9.4.8) 

 
If a Cartesian coordinate system is introduced, we may write, 
 
 1 2 3( ) ( ) ( ) ( )t v t v t v t  v i j k . 

 
Then ( )tv  is continuous at 0t  if and only if its three components are continuous at 0t . 

 
Derivative of a vector function: A vector function ( )tv  is said to be differentiable at a point t  if the 
following limit exists, 
 

 
0

( ) ( )
( ) lim

t

t t t
t

t 

   


v v
v . (9.4.9) 

 
This vector ( )tv  is called the derivative of ( )tv .  See fig. 197. 
 

 
 
In components with respect to a given Cartesian coordinate system, 
 
 1 2 3( ) ( ) ( ) ( )t v t v t v t     v i j k . (9.4.10) 

 
Hence the derivative ( )tv  is obtained by differentiating each component separately.  For instance, 

if 2( )t t t v i j  then ( ) 2t t  v i j . 
 

Equation (9.4.10) follows from (9.4.9) and conversely because (9.4.9) is a "vector form" of the 
usual formula for calculus by which the derivative of a function of a single variable is defined.  (The 
curve in Fig. 197 is the locus of the terminal points representing ( )tv  for values of the independent 
variable in some interval containing t  and t t  in (9.4.9)).   

 
The familiar differentiation rules continue to hold for differentaiating vector functions, for 

instance, 
 

 
( ) ,

( ) ,

c c 
    

v v

u v u v
 

 
and in particular, 
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 ( )     u v u v u v , (9.4.11) 
 ( )     u v u v u v , (9.4.12) 
 ( ) ( ) ( ) ( )           w w w wu v u v u v u v . (9.4.13) 
 
Example 4: Derivative of a vector function of constant length 

Let ( )tv  be a vector function whose length is constant, say, ( )t cv .  Then 
2 2c v v v , and ( ) 2 0   v v v v , by differentiation.  Hence, the derivative of a 

vector function ( )tv  of constant length is either the zero vector or is perpendicular to 
( )tv . 

 
9.4.2 Partial derivatives of a vector function 
 
Partial differentiation of vector functions of two or more variables can be introduced as follows.  
Suppose that the components of a vector function, 
 
 1 1 1 2 1 3 1( ,..., ) ( ,..., ) ( ,..., ) ( ,..., )n n n nt t v t t v t t v t tv i j k   , 

 
are differentiable functions of n  variables 1,..., nt t .  Then the partial derivative of v  with respect to 

mt  is denoted by / mt v  and is defined as the vector function, 

 

 1 2 3

m m m m

v v v

t t t t

   
  

   
v

i j k . 

 
Similarly, second partial derivatives are 
 

 
2 2 2 2

1 2 3

l m l m l m l m

v v v

t t t t t t t t

   
  

       
v

i j k , 

 
and so on. 
 
Example 5: Partial derivatives 

Let 1 2 1 1 2( , ) cos sint t a t a t t  r i j k .  Then 1 1
1

sin cosa t a t
t


  


r

i j  and 
2t





r

k . 

 
Various physical and geometric applications of derivatives of vector functions will be discussed in 
the next sections and in Chapter 10. 
 


